The Role of Alloying Elements on the Crevice Corrosion Behavior of Ni-Cr-Mo Alloys

نویسنده

  • N. Ebrahimi
چکیده

The roles of the alloying elements Mo, Cr, and W in resisting crevice corrosion of UNS N06022, UNS N06625, and UNS N10362 have been studied under galvanostatic conditions in 5 mol/L NaCl at 150°C. Corrosion damage patterns were investigated using surface analytical techniques such as scanning electron microscopy and optical imaging, and the corrosion products characterized by energy dispersive x-ray spectroscopy. While the Cr content of the alloy is critical in controlling initiation of crevice corrosion, the rate of activation (passiveto-active transition) is influenced by both the Cr and the Mo (and W) contents. The alloy’s Mo content also determines the distribution of corrosion damage within the crevice. In alloys with high Mo content, corrosion propagates laterally across the surface, while in alloys with low Mo content, it penetrates into the alloy. This can be attributed to the accumulation of molybdates (and tungstates), which stifle alloy dissolution at active sites. Thus, as the Mo content of the alloy increases in the order N06625 (9 wt% Mo)<N06022 (13 wt% Mo [3 wt% W])< N10362 (22 wt% Mo), the depth of corrosion penetration decreases. In addition, once crevice corrosion initiates and the crevice acidifies, metal oxidation can also couple to proton reduction inside the crevice. The role of internal proton reduction in driving the crevice corrosion of these Ni alloys was found to be quite significant; greater than 50% of the corrosion damage is caused by proton reduction inside the crevice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Alloying Elements on Crevice Corrosion Inhibition of Nickel- Chromium-Molybdenum-Tungsten Alloys under Aggressive Conditions: An Electrochemical Study

The effects of Cr, Mo and W on the crevice corrosion of a number of commercial Ni-Cr-Mo (W) alloys in 1.0 mol/L NaCl were studied using the potentiodynamic-galvanostaticpotentiodynamic technique to measure film breakdown and repassivation potentials as well as protection temperatures. As expected, Cr is the key element determining resistance to crevice initiation but a substantial Mo alloy cont...

متن کامل

The Role of Copper on the Crevice Corrosion Behavior of Nickel-Chromium-Molybdenum Alloys in Aggressive Solutions

The effect of Cu on the localized corrosion of Ni-Cr-Mo alloys has been investigated in hot saline solutions by comparing the behavior of N06059 and N06200 alloys, using electrochemical and surface analytical techniques. No measurable effect of copper on anodic film growth kinetics and passive film properties was detected and the breakdown and repassivation potentials of the alloys were very si...

متن کامل

Cr, Mo and W alloying additions in Ni and their effect on passivity

The passive corrosion properties of a series of Ni–Cr–Mo alloys were investigated. The alloys studied were C22, C2000, C276, C4 and 625. Potentiostatic experiments at potentials within the passive range were obtained as a function of temperature (25–85 ◦C) for each alloy. Each specimen was subsequently analyzed by time-of-flight secondary ion mass spectrometry (TOF SIMS) and X-ray photoelectron...

متن کامل

Materials Selection for Use in Hydrochloric Acid

Hydrochloric acid (HCl) is an important mineral acid with many uses, including the pickling of steel, acid treatment of oil wells and chemical cleaning and processing. This acid is extremely corrosive and its aggressiveness can change drastically depending on its concentration, the temperature and contamination by oxidizing impurities. One of the most commonly encountered oxidizing impurities i...

متن کامل

Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution

Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015